DE Seminar / Applied Math Colloquium: Dr. Xin Liu
Texas A&M University
Location
Mathematics/Psychology : 106
Date & Time
January 22, 2019, 1:00 pm – 2:00 pm
Description
Title: Solutions with bounded entropy to compressible Navier-Stokes equations
Abstract: Compressible fluids (or gas) can be modeled by hydrodynamic equations. The second law of thermodynamics states that for a closed system, the total entropy is non-decreasing. Our goal is to find solutions to the hydrodynamic equations with bounded entropy. Demonstrated by Makino, Ukai, Kawashima, Xin, Yan, etc., the associated Cauchy problems with smooth solutions will blow up in finite time with the appearance of vacuum states for either inviscid or viscous flows. These results motivate us to study the free boundary problems. As a first step, 1. we establish the equilibrium for a model of radiation gaseous stars, which serves as an example of stationary flows with bounded entropy; 2. we show local-in-time existence of evolving flows with bounded entropy; 3. we also construct a class of global-in-time solutions with bounded entropy. These works contain part of the authors’ PhD thesis with Prof. Zhouping Xin as our advisor.
Joint work with Yuan Yuan, South China Normal University